ベニヤのスカーフジョイテングについて(1)

- 単板のスカーフ切削 -

野崎兼司田口 崇高谷典良 吉田弥明小倉高規

はじめに

国内産樹種の合板用材は、資源減少の歩みをたどり、その品質も年々低下しつつあるが、一方、輸入南方材も現地事情によって良質のものの入手が困難となってきている。したがって今後益々低質化する原木をいかに歩止りよく、合理的に利用するかが、これからの合板工業の解決すべき問題の一つであろう。このような考えから筆者らは、小径木の利用、原木端切材の利用をはかるため、長さの短い単板の縦接合を取り上げ、フィンランド、ラウテ社製FVS型ベニヤスカーファーおよびJP/HL型ベニヤスカーフジョインテングプレスを用い、実用機によるスカーフ接合試験をおこない、技術上の諸問題について検討を加えた。今回は単板のスカーフ切削について報告する。

1. 単板のスカーフ切削試験

スカーフ接合の良否に関係する大きな因子の一つとして,スカーフ切削精度が考えられる。したがって, 良好な切削精度をうるためには,いかなる条件で切削 をおこなえばよいか検討を加えるため,切削精度に影 響を与えると思われる, 樹種, 単板厚さ, 単板の狂い, 単板の送り速度の4因子をとりあげて試験をおこなった。スカーフ倍率は, 実用上から, また予備試験によってこれら諸条件の影響が最もシビヤーに現われる12倍とした。

1.1 試験方法

1.1.1 試験条件

樹種シナ,セン,ラワン

単板厚さ 0.9mm, 2.5mm

単板の狂い 単板木口面の波打大,同小

単板送り速度 15m/分,25m/分

(単板木口面の波打ちを以下単板の狂いとよぶ。) 以上の4因子を取り上げ,第1表の組合せによる18 条件とし,各条件10枚宛,計180枚の切削をおこなっ

第1表 スカーフ切削条件の組合せ (樹種シナ,セン,ラワン)

単板厚		0.9mm		2,5mm	
単板の狂い送り速度	大	小	大	小	
15m/分	0	0	0	0	
25m/分		0	_	0	

た。

なお,単板の狂いが大きいもので単板の送り速度25 m/分のものを除外したのは,予備試験において,これらの条件のものは,切削中に破損もしくは,かけなどによって接合が不可能とみられたからである。

1.1.2 供試単板

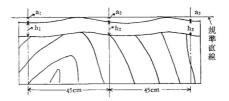
各樹種,厚さについて巾×長さ95cm×45cmの単板を調整した。狂い大の条件のものは,ローラー・ドライヤーで乾燥したものをそのまま用い,狂いいの条件のものは,全てホットプレスにより,しわのばしを施して試験に供した。

単板の狂いの状態を表わすのに,供試単板10枚を堆積し,その堆積高さを,単板厚合計に対する倍率で表わし,結果を第2表に示した。

第2表 狂い大なる供試単板の堆積倍率

単板厚mm		0.9			2.5			
樹	種	シナ	セン	ラワン	シナ	セン	ラワン	
倍	率	9.0	9.4	4.5	3.5	3.4	4.5	

- - 2. 単板含水率6~12% (KETT M8S型)
 - 3. 狂いなる単板の堆積倍率1.5~2倍


1.1.3 切削条件

切削条件は,下記のとおりスカーファーを調整し, 送り速度を除いて一定条件で切削した。

- 1)使用丸鋸は,スカーファーに附属の特殊片刃マイタソーを用いた。(径200mm,厚さ3mm,歯数60枚)
 - 2) 丸鋸回転数 約5,600r.p.m.
 - 3) 丸鋸首振角度4°45 (スカーフ培率12倍)
 - 4) 単板案内板間隔は,切削単板厚さと同じ。
- 5) スカーフ面の先端が, 丸鋸のほぼ中心を通過するよう調整した。
- 6) スカーフ面の先端が, 単板の表面となるように 切削をした。

1.1.4 切削精度の判定

切削精度の判定は,スカーフ切削面の肉眼的観察と,スカーフ面先端の直線度,スカーフ巾を第1図に

第1図 スカーフ切削精度測定位置

示す方法で測定して表わした。すなわち,平盤上に基準直線を引き,スカーフ切削をおこなった単板を,スカーフ先端の2点が基準線に接するように盤上に置き,当て板を用いて単板を平盤に押えた状態で,第1図に示す単板巾方向の三点について,基準線からスカーフ先端までの距離と,スカーフ巾を測定した。

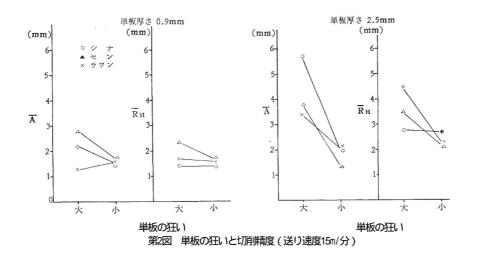
スカーフ面先端の直線度は , a₁ , a₂ , a₃ , 3点の平均値をAとし , 1条件10枚の平均値をA として表わした。スカーフ巾は , h₁ , h₂ , h₃ , 3点の平均値をH , 10枚の平均値をE とし , h₁ , h₂ , h₃の範囲とその平均値をそれぞれRHおよびR₁として表わした。

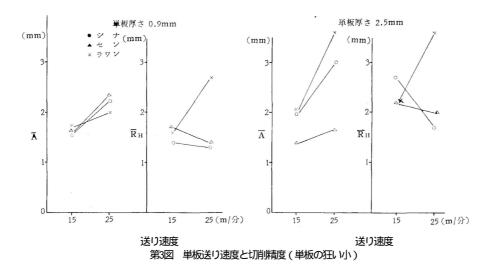
1.2 試験結果および考察

スカーフ切削面の肉眼的観察によると, 樹種別では, 各厚さともシナ, センがほぼ同程度に良好で, ラワンがやや悪く, スカーフ面の先端に針状のケバ立ちが多く発生したが, 切削面そのものに大差は認められない。

また,単板の狂いと送り速度の影響では,狂い小-15m/分が最も良好で,狂い小-25m/分,狂い大-15m/分の順に悪くなり,狂い大の単板の切削面には,部分的に面荒れが見受けられた。

単板厚さの影響では,セン,ラワンの0.9mm厚の ものに切削中に破損が多かった。


スカーフ巾の測定結果を**第3表**に示す。樹種の影響は,スカーフ面先端の直線度,スカーフ巾のバラツキ,何れにもはっきりした傾向は認められない。単板の狂いと切削精度との関係を**第2図**に示す。


ラワン0.9mmを除き,何れも単板の狂いが大きくなると,直線度は低下し,スカーフ巾のバラツキも大となる。単板の送り速度とスカーフ精度の関係を**第3図**

		第3表 スカ・	- フ巾	測定	こ 結 果		単位mm	
		単板の狂い	人			小		
	送り速度 m/分		15		15	25	25	
樹_ 種	単板厚	スカーフ巾mm mm	Ħ		Ħ	Ħ		
)-	- 0.9	8.2	(1)	8.8	7.0		
<i>y</i>	シナ	2.5	25.9		26.0	25.4		
	センソ	0.9	9.4	(3)	8.8	7.7	(3)	
42		2.5	24.2		26.2	26.3		
		0.9	8.8	(3)	8.6	8.8	(3)	
7	ラ ワ ン	2.5	25.4		26.5	25.4		

注 1.()内は切削中の破損数(10枚中)

2. スカーフ倍率12倍

ベニヤのスカーフ , ジョインテングについて

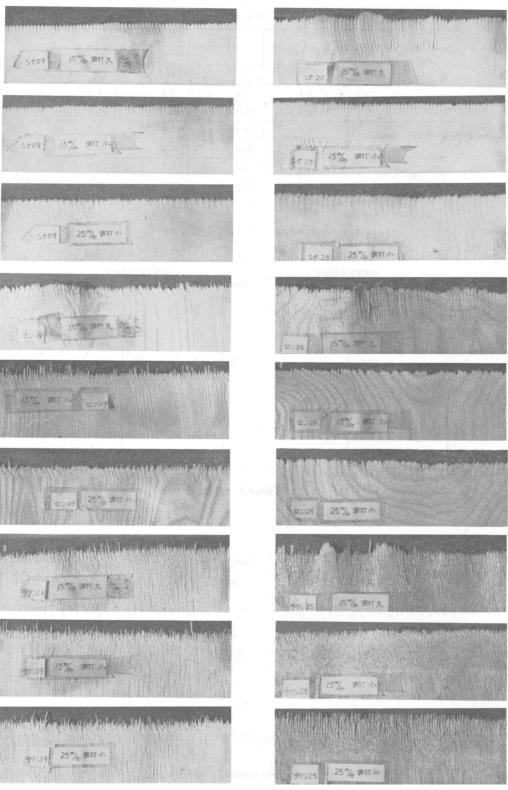


写真 ベニヤのスカーフ切削面

に示す。送り速度が速くなると,単板厚さにかかわらず直線度は低下するが,スカーフ巾のバラツキは,ラワンでは送り速度が速いと大きくなり,シナ,センでは逆に小さくなる。

単板厚さと切削精度の関係は,0.9mm厚のものが, 2.5mm厚のものに比して直線度,スカーフ巾のバラツ キ何れも絶対値においては良い値を示している。しか し,スカーフ倍率から計算したスカーフ巾と,実測したスカーフ巾とを比較すると,0.9mm厚単板では実 測値が計算値の75~80%,2.5mm厚単板では85~90 %となり,単板厚の厚い方が計算値に近い値を示している。

- **試験部 合板試験科** - (原稿受理 46.6.30)