第VI章 総 合 考 察

テンサイの根乾物生産に関する太陽放射利用率は、基本的には生育過程における光合成量の多少と、 光合成産物がどれだけ多く根へ配分され、蓄積されるかによって決まるといえる。圃場条件下の光合成 量は、光合成有効放射吸収量を規定する群落の体制と生理生態を規制する環境諸因子によって支配され ている。これらの関係についてこれまで述べてきた結果を総合して考察する。

テンサイの生育過程でまず重要なことは、生育の極く初期(葉面積指数が1前後)における光合成量である。これには、光合成速度と葉面積が問題になるが、北海道の5月~6月の放射量は豊富で、個葉の受光能率が高く、光合成速度の水準は高いので、光合成速度はあまり大きな問題にはならず、葉面積が決定的支配因子になる。一方、この時期の気温と地温はほば14℃以下であり、光合成速度の低下よりも呼吸速度、蒸散速度の低下が著しい。したがって、代謝系の活動が抑制されるとともに、栄養塩類の吸収が妨げられるので次期生産に必要な同化器官への物質の転流量が少なくなる。それ故、葉面積の拡大をはかるには、体温の上昇が必須条件になる。

葉面積が発達し始める6月(葉面積指数が2前後)では、放射量が年間で最も多い時期であり、この放射量を有効に利用できるか否かが重要な問題になる。この時期ではなお葉面積の拡大が光合成の規定因子になり、群落の緑被形成を速やかに達成することが必要である。これには均一群落が最も有効である。広畦栽培で株間を狭くすると、畦間では光飽和の状態にありながら株間では葉群の相互遮蔽のために光合成速度が低下し、同化器官の発達を抑制することになる。また、6月末においても気温は20℃以下であり、昇温による光合成と蒸散の促進が必要条件になる。土壌水分は一般的にみて十分に存在する時期であるが、根域が浅いので乾湿の変動は根の吸収機能に影響を及ぼし、葉内水分の不足が起り易く、P/T比が低下することがある。

生育中期(葉面積指数 $3 \sim 4$)になると、光合成は葉面積より群落構造に規定されるようになる。葉面積の拡大に伴い放射の透過率は減少して、吸収量は増大するが、反面、中間層以下の葉群では受光量が著しく減少することになる。したがって、全体の放射吸収量を高めようとすれば、群落と上層と中間層で放射吸収率の差が大きくならないような群落構造が望ましいのである。このためには、均一群落あるいはこれに近い畦状群落で個葉の傾斜角が小さく、均一に分布することが必要である。また、この時期は気温が 20℃ 前後にまで上昇し、放射量も多いので、テンサイの生育は極めて旺盛になるが、一方では、土壌の乾湿、施肥の多少、気温の低下などの環境条件がテンサイの生理生態に変化をもたらし、光合成を規制する。すなわち、葉面積の著しい拡大あるいは縮小、C/F 比および R/P 比の増加、P/T 比の減少などの諸現象となって放射利用率を支配している。

生育最盛期(葉面積指数5前後)では、放射の透過率は著しく低下し、群落内の放射の吸光係数は増大しているので、葉面積は光合成の規定因子にはならず、個葉の配置が重要になる。すなわち、植被層の葉面積と放射吸収量が光合成量を規定するのである。この場合、植被層の葉面積は均一群落かこれに近い狭畦群落で多くなる。しかし、前述のような栽培環境条件により、葉面積が過大になって、葉面積指数が6前後に達すると、均一群落では不利になり、畦状群落が有利になる。この傾向は、C/F比、R/P比などの拡大に関連し、とくに放射量が少なく、高温あるいは飽産の増大が伴う場合は、P/T 比を著しく減少させることになり、放射利用率には大きい制限因子として作用する。

生育後期(葉面積指数4前後)は登熟期であり、光合成産物を根に蓄積する過程であるから、基本的には光合成量が問題になるが、とくに光合成速度が主な規定因子になる。しかし、新葉の再生によって

同化機能の向上をはかろうとすると、それだけ根への転流量が減少するので、ここでは、光合成速度を高めるような群落構造と環境因子が重要な役割を受持つことになる。群落構造は生育前歴によって著しく変化している。すなわち、葉面積の過大または過小、葉群の配置、C/F 比などである。この時期では全般に葉の傾斜角が増大し、葉面積指数が 4 以下の比較的小さい条件でも放射の吸光係数は大きくなるので広畦栽培では不利になる。しかし、葉面積が過大になる条件では均一群落においても中間層の光合成速度は低いので必ずしも有利になるとはいえない。一方、呼吸量の増加は光合成産物の消費になるので R/P 比が増加する条件、すなわち、温度の上昇、窒素養分の過多 C/F 比の増大などは根の乾物生産効率を低下させることになる。この時期の放射量は著しく減少しており、気温も低下するので、体温はかなり低下する傾向にある。したがって呼吸速度の低下と蒸散速度の低下による根の吸収力の減衰は、光合成産物の根への転流を妨げるので、昼間の体温のある限度を越えた低下は生産効率からみて不利になる。光合成、呼吸、蒸散などのバランスからみると、登熟期では、昼間の体温は 15~25℃の範囲にあることが望ましい条件といえる。

品種の草型の差異が放射利用率とどのような関係にあるかをその代表例として,直立型品種と開平品 種を比較しながら検討してみよう。生育初期においては直立型品種は株間が狭くても葉群の相互遮蔽が 少ない利点はあるが、一方では、広い畦間で放射の透過率が増加し、放射吸収量が減少するのでこれと 相殺されることになる。開平型品種は速やかな緑被形成のためには有利であるが、葉面積の発達過程で 比較的早い時期から群落内で放射の吸光係数が大きくなり、中間層以下の葉群では光合成速度が低下す る。葉面積が発達してくると、個体相互の接触により、品種本来の草型を保持することができず、光合 成量は葉面積の大小と群落条件によって規定されるようになる。葉面積指数が4以下の時期では開平型 品種がやや有利になるが、これも均一群落に近い栽培条件でのみ有効であろう。葉面積指数が5以上に 発達した場合は,大島 (1962),Loomis et al. (1971) が述べているように直立型が有利になるが,群落 光合成は植被層の葉面積と放射吸収量に支配されるので、群落構造の差異による影響が大きくなり、草 型の差は現われ難い。生育後期になると、一般に葉面積が減少し、葉の傾斜角が増大する傾向にあり、 成熟葉は品種に関係なく下垂するので、生育初期のように品種の草型による明確な差異はみられなくな る。したがって、全生育期間を通じてみると、品種の草型と栽植密度との間には交互作用がみられない 場合が多い。受光能率からみると,太陽放射の入射方向に対して直角に近い傾斜角を有する葉が最も有 利であり、主としてこのような葉群で構成している品種草型を仮りに中間型とすると、これを均一群落 に近い栽植様式で栽培するのが最適であろう。

次に施肥条件と放射利用率との関係について若干の検討を試みる。肥料養分は同化器官の発達および代謝系の活動に極めて重要である。とくに生育初期から中期にかけての同化体制の確立になくてはならないものである。生育初期においては、低温のため新葉の出葉速度は遅く、葉面積の増加は主として個葉の拡大によらなければならない。しかし、この際に多肥条件になると、個葉は必要以上に拡大し、群落構造は悪化する。この傾向は体温が $15\sim20^{\circ}$ Cの範囲にある条件で顕著に現われるであろう。生育盛期の多肥条件では、光合成産物が新葉出現のために多く配分され、葉数の増加と個葉の拡大による葉面積の増加が光合成速度を低下させることになり、群落の光合成量は葉面積の増加の割合に増大しない。また、C/F比が上昇するので、とくに高温条件では R/P比の増加が著しくなる。生育後期において窒素質肥料が過剰にあると、個葉の拡大により光合成速度が低下するとともに、新葉の発生が活発になって光合成産物の根に蓄積される量は減少する。

一方、少肥条件では、とくに生育初期の同化器官の発達が抑制されると同時に、葉身の減少は C/F 比を上昇させ、R/P 比は増大するようになる。また、個葉の光合成速度は葉身内の窒素濃度の低下によって低下することがあるが(武田、玖村 1957)、蒸散作用は主として環境の物理作用によって規定される

ので、窒素濃度の低下による蒸散速度の低下はなく、P/T 比は低下して根の生産効率も上昇しない。したがって、総体、根ともに乾物生産量は低下すると考えられる。

光合成からみて必要な施肥量は、土壌の基本的な化学性を別にすると、生育前半において同化器官の発達に必要な量を主体に考えればよく、生育後期においては光合成の化学反応と代謝系の活動に必要な量が補給されるとよいのである。栄養塩類の吸収は、根の吸収能力を左右する根の呼吸機能と水の吸収を規定する蒸散に関係している。それ故、施肥量を問題にする場合は、これらに関係する土壌環境と気象因子を考慮することが基本的に重要である。

以上より、テンサイの乾物生産において高い太陽放射利用率を得るには、均一群落に近い構造を基本として、生育初期の葉面積の発達を促進し、放射吸収量を高め、繁茂期の葉面積指数の最高値が 5 程度になるような群落の作成が必要である。これに関与する環境条件としては、生育初期の気温と地温がなるべく速やかに 15C以上に達し、夏期の昼間気温は主として 20~25Cの範囲内にあること、地温は昼間で 21C以上には上昇しないこと、土壌水分は pF 1.7~2.4 の範囲内にあることが望ましい条件といえる。

要 約

本研究はテンサイの乾物生産過程において太陽放射を最も効率よく吸収できる群落構造と生理生態的特徴を把握するとともに、光合成によって物質が生産され、根に蓄積される過程で太陽放射利用率がどのような環境によって規制されるかを明らかにし、目的器官である根の乾物生産量が最も高くなるような条件を見出そうとして、北海道中央農業試験場において1971年より9年間にわたって実施したものである。

実験においては、主として栽植様式を変えたテンサイ群落について、太陽放射吸収量、群落光合成量、 呼吸量、蒸散量などを測定し、これらに関与する環境因子との関連性を検討するため、開放型自動温度 調節装置、土壌温度調節装置、土壌水分調節装置などを使用した。

得られた結果を要約すれば次のとおりである。

- (1) テンサイ生育期間中の圃場に入射する全短波放射量の日量は 4 月から 6 月まで増加して、 6 月上旬にピークになり、晴天日の最高値は $1.2\,\mathrm{cal}\cdot\mathrm{cm}^{-2}\cdot\mathrm{min}^{-1}$ 前後を示し、曇天日は $0.4\,\mathrm{cal}\cdot\mathrm{cm}^{-2}\cdot\mathrm{min}^{-1}$ 以下であった。光合成有効放射量($0.4\,\mathrm{cal}\cdot\mathrm{cm}^{-2}\cdot\mathrm{min}^{-1}$ は全短波放射量に対してほば 48.1%であった。
- (2) 波長別放射のテンサイ群落における反射率は $0.55\sim0.60~\mu$ でピークになり, $0.60\sim0.70~\mu$ でくばみになる。 $0.60\sim0.70~\mu$ の範囲では,太陽高度が低い条件で畦幅が広くなるほど反射率が増加した。 光合成有効放射波長域の反射率は $2.9\sim4.8\%$ であった。
- (3) 繁茂期(葉面積指数 5 前後)の群落内放射透過率は光合成有効放射波長域で減少し、波長が長くなると大きくなった。太陽高度が高い条件では透過率が増大し、広畦群落で著しい。
- (4) 生育盛期におけるテンサイ群落の光合成有効放射吸収率は 88.4~94.0%で、全般に太陽高度が高くなると、均一群落で増大し、畦幅が広くなるほど減少した。
- (5) テンサイ群落の光合成有効放射吸収量は、均一群落>狭畦群落>広畦群落の順になり、とくに、 生育初期の広畦群落で減少した。
- (6) テンサイ群落の光合成量は、放射量の日変化によく追随しており、光一光合成曲線は多くの場合、単純な指数曲線を示した。相対光合成速度(光合成有効放射量および空中 BO₂ 濃度との相対値)と葉面積指数とは指数関数で表現できた。相対光合成速度は均一群落で最も高く、畦幅が広くなるほど低下した。葉面積指数が 5 枚前後に達すると、狭畦群落が均一群落よりやや高くなった。

(7) テンサイ群落光合成量と光合成有効放射吸収量および植被層の葉面積指数とは密接な関係にあり、次の重回帰式が得られた。

$P = -1.73 + 0.13 A_{PAR} + 0.83 F$

P;単位圃場面積当り光合成量, A_{PAR};植被層における光合成有効放射吸収量,

F:植被屬葉面積指数

- (8) テンサイ群落の生育期間中の積算光合成量は、群落間および年次間で差はあるが、4 CO₂kg·m⁻² 前後であり、均一群落≥狭畦群落>広畦群落の順になった。
- (9) テンサイ群落の蒸散量は、放射量の増加に伴いほぼ直線的に増加した。相対蒸散速度(水深換算 した全短波放射量との相対値)と葉面積指数とは指数曲線式で近似できた。
- (III) テンサイ群落の蒸散量と光合成有効放射吸収量および中間層以上の葉面積指数とは密接な関係があり、次の重回帰式が得られた。

$T = -277.8 + 26.2 A_{PAR} + 4.8 F$

T;単位圃場面積当り蒸散量, A_{PAR};群落中間層以上の光合成有効放射吸収量

F;群落中間層以上の葉面積指数

- (II) テンサイ群落の生育期間中の積算蒸散量は群落間および年次間で差はあるが、400 H₂Okg·m⁻² 前後であり、均一群落≧狭畦群落>広畦群落の順になった。
- (12) 光合成係数 (積算光合成量/収穫期乾物生産量) が小さくなる範囲は P/T 比 (積算光合成量/積算蒸散量) が 9 前後で得られた。
- (B) テンサイ群落における根の乾物生産放射利用率の差異は顕著であり、均一群落>狭畦群落>広畦群落の順になった。また、均一群落の光合成係数は最も小さく、乾物生産効率は高い。
- (ロ)テンサイ群落の葉身水ポテンシャルは蒸散速度が上昇するとともに低下し、水ポテンシャルが-6 bar 以下に達すると蒸散速度の制限因子として作用した。
- (15) テンサイ群落の葉身水ポテンシャルが-6 bar 附近になると、光合成速度は減少の傾向を示した。葉身水ポテンシャルが $-2 \sim -6$ bar の範囲では、P/T 比は急激に低下した。更に、 $-6 \sim -8$ bar にまで低下すると、蒸散速度も抑制され、P/T 比の変化は小さくなった。
- (16) 葉面積指数が十分に発達したテンサイ群落では、光合成速度および蒸散速度と気象要素(放射量,蒸発計蒸発量、飽差、空中 CO₂ 濃度、気温)、体温との相関係数は全般に高い値を示した。光合成速度と空中 CO₂ 濃度との関係では、CO₂ 濃度が高い場合は放射量が強い規定因子になった。相対光合成速度(光合成速度/全短波放射量)と気温では負相関を示した。午前中の蒸発計蒸発量と蒸散速度との相関係数の値は低い。
- (I7) テンサイ群落の光合成速度は、体温が 26℃前後でピークになり、これより低温、高温いずれにおいても低下した。
- (18) テンサイ群落の日平均呼吸量と真の光合成量との比(R/P)は低温条件で著しく低下した。生育時期によって異なるが、低温処理条件では $0.18\sim0.36$ であった。
- (19) テンサイ群落における蒸散速度は気温が30℃以下の条件では、体温が上昇するにしたがって増大するが、一方、気温の変化に起因する飽差にも強く影響を受ける。
- (20) テンサイ群落の乾物生産における根/総体比と P/T 比とは密接な関係があり、P/T 比が 9 前後で根/総体比が高くなった。低温条件では、蒸散量が著しく低下して P/T 比が高くなり、根/総体比は低下した。

- (21) テンサイ群落の乾物生産放射利用率は生育期間の平均気温 19.5℃ (体温 21.4℃), 夜間平均気温 14.9℃, 日平均気温 16.8℃で高い値を示し、根で 1.47% (全短波放射量をベースとする) を得た。
- (22) テンサイ個体の生育初期における相対光合成速度(全短波放射量との比)は、土壌温度が $18\sim19^{\circ}$ でピークを示すゆるやかな曲線で示された。相対蒸散速度は、 30° 附近までは直線的に上昇した。呼吸の土壌温度における温度係数 Q_{10} は 1.8 であった。
 - (23) テンサイ個体の P/T 比は、上壌温度が上昇するとともに低下する指数曲線で示すことができた。
- ② テンサイ個体の生育初期における根/総体比は P/T 比と密接な関係にあり、P/T 比が 9 前後で高くなった。低温条件では、R/M 化水低下して R/M 化は増加するが、高温条件では、R/M 化水管しく低下して根/総体比は増加しなかった。
- (25) テンサイ個体の生育初期における正味光合成量の最高値を示す土壌温度は 21℃前後で得られ、乾物生産量が高くなる好適範囲は 16~21℃であった。
- (26) テンサイ個体の光合成速度と蒸散速度は、土壌水分が pF 1.0 附近で著しく抑制された。pF 値の上昇に伴い光合成は pF 1.7 附近で、蒸散は pF 1.5 附近で回復し始める。この傾向は圃場条件でも同様であった。
- ②7) テンサイ個体の光合成速度は, 土壌水分が pF 2.4 附近より低下し始めるが, 蒸散速度は pF 2.6 附近より低下した。
- (28) テンサイ個体の根 TTC 還元力は、土壌水分 pF 値 1.5 附近で著しく抑制されるが、pF 1.7~2.0 では上昇した。 葉身水ポテンシャルは、pF 1.5 で著しく低下し、pF 1.7~2.0 で急上昇した。
- (29) テンサイ群落において、降雨およびかん水による多水分条件では、葉面積指数が過大に発達して 光合成速度は低下した。乾燥条件では、葉面積が縮小し、光合成速度は高くなったが、光合成量は減少 した。上壌の改善処理により pF 1.7~2.4 の範囲を長期間保持した場合は、葉面積指数が好適条件にな り、光合成速度、光合成量ともに高かった。
- (30) 以上の結果を総合して、テンサイ群落の乾物生産放射利用率を左右する作物群落体制並びに生理生態に関与する環境条件について好適範囲は以下のとおりと推定した。好適群落は均一群落に近い構造を基本として生育初期の葉面積が速やかに発達し、繁茂期の葉面積指数が5程度になること、好適環境条件は生育初期の気温と地温が速やかに15℃以上に達し、夏期の昼間気温が20~25℃の範囲にあり、地温が21℃以上に上昇しないこと、土壌水分がpF1.7~2.4の範囲内にあることである。

参考文献

- Berlyand, T. G., 1960. Distribution of solar radiation on the earth (in Russian). 14—23. in heat and water balance at earth's surface. Gicrometeoizdat Lenigrad.
- 2 Briggs, L. T. and H.L.Shantz. 1914. Relative water requirement of plants. J. Agric.. Res.3: 1—63.
- 3 ——, ——, 1915. An automatic transpiration scale of large capacity for use with freely exposed plants. J. Agric, Res. 5: 117—132.
- 4 —, —, 1915, Daily transpiration during nomal growth period and its correlation with the weather. J. Agric, Res.7: 155—212.
- 5 _______, _________, 1916, Hourly transpiration rate on clear days determined by cyclic environmental factors.

 J. Agric. Res.7: 583—649.
- 6 Brix, H., 1962. The effect of water stress on the rates on photosynthesis and respiration in tomato plant and loblolly pine seedlings. Plant physiol, 15: 10—20.
- 7 Brown, R.H. et al., 1966. Effect of leaf age on efficiency. Crop Sci. 6: 206-209.
- 8 Budagovsky, A.L. 1964. "耕地の蒸発散"畑地農業研究会, 174 PP。内嶋善兵衛訳, 1965。
- 9 Efimova, N. A. 1965. ソビエト領内における光合成有効放射の分布・. 〔収録:農林水産技術会議事務局, 1967, "光合成と多収穫"技術会議調査資料, 49 (海外)〕
- 10 Gaastra, P. 1959. Photosynthesis of crop plants as influenced by light, carbon, dioxide, temperature and stomatal diffusion resistance. Mededel alnd bouwhogesch. Wageningen, Nederland.59: 1–68.
- 11 Guliaev, B.I., 1965. 光合成有効放射の測定について、〔収録:農林水産技術会議、調査資料課、1971. "光合成有効放射の測定"技術会議調査資料、62 (海外)〕
- 12 長谷場撤也, 1973. 蒸散に関する研究(5). 蒸散に及ばす日射量と気温の影響. 農業気象, 29:189-197.
- Heath, O.V.S. 1959. The water relations of stomatal cells and mechanism of stomatal movement. "In plant physiologya treatise". ed. F. C. steward. Academic press. New York. 2: 193—250.
- 14 星野正生ほか, 1972, ラジノクローバにおける¹⁴CO₂の同化と同化率と同化産物の転流に関する実験。第 7 報。 ¹⁴C 同化産物の転流速度におよばす温度, とくに低温の影響。
- 15 石原邦ほか, 1971. 水稲における気孔の開閉と環境条件との関係. (1)気孔開度の測定法について. 日作紀, 40:491-496. 同上(2)気孔開度の日変化について. 同誌. 40:497~504.
- 16 猪山純一郎,村田吉男,1961,畑作物の光合成に関する研究。(2)土壌水分と数種畑作物および水稲の光合成との関係、日作紀。29:350-352。
- 17 伊藤浩司, 1965. 甜菜の光合成に関する研究. (2) 葉位別光合成能力ならびに単葉の特性. 日作紀. 33: 487-491.
- 18 ----, 1965. 甜菜の光合成に関する研究. 第3報. 群落光合成, 日作紀. 33:492-497.
- 19 Ito, K. 1972. Population phosoynthesis in sugar beet plant under field conditions. "Photosynthesis and Utilization of Solar Energy" (3) JIBP/PP (JPP). 24—27PP.
- 20 上堂秀一郎, 1975. 作物の気孔運動と水分生理に関する研究. (3)タバコの気孔開度と蒸散量の同時記録と これらに対する上壌水分ストレスの影響. 日作紀. 44(2); 166-171.
- 21 鴨田福也ほか, 1974. 野菜の光合成および蒸散に関する研究. 1,光合成,蒸散の作物間差異および土壌水分との関係. 野菜試報. A (1);109-139.
- 22 加藤一郎ほか, 1960. 蒸散量測定法に関する研究。(1) 蒸散室に通気し、湿度測定法による方法。日作紀。 28:286-288。
- 23 ----, 1962. 畑作水稲の蒸散量について、日本作学会東海支部研究発表梗概、33:17-22、
- 24 ―――, 1963. 作物の蒸発散に関する研究. 東海近畿農試研究報告. 栽培部. 4:1-8.
- 25 ―――, 1965. 各種畑作物の蒸散量と葉面積指数. 東海近畿農試研速報. 2:14-17.
- 26 , 1966. Chamber 法による 蒸発散量の測定について (1) Chamber 内の環境について、日本作物学会 東海支部第 45 回研究発表梗概:26 30

- 27 ----, 1967. 土壌水分と水稲の体内水分含有率に関する試験. 畑地かんがいに関する研究集録. 9:97-100.
- 28 川竹基弘ほか, 1967. 噴霧栽培による作物の水分反応に関する試験。同上集録。9:107-109.
- 30 Ketellapper, H.J., 1963. Stomatal physiology. Ann. Rev. Plant physiol. 14:249-270.
- 30 吉良芳夫ほか, 1952. 畑地かんがいに関する研究. 農技研報. F4:1-56.
- 31 岸田恭允, 1973. 耕地の放射エネルギー利用に関する農業気象学的研究,〔1〕九州農試報, 17(1): 1-79.
- 32 北村 亨,今 友親,1970 主要畑作物の蒸散量と蒸発散量、北海道立中央農試集報、20;80-94.
- 32 ----, 堂腰 純, 1971. ファームトロンの試作について、日本気象学会北海道支部会誌。22:21-27.
- 34 Koch. W., 1957. Der Gagesgang der "Produktivitat der Transpiration" Planta. 48: 418-452.
- 35 Kondratyev, K.I A., 1960 自然表面の波長別アルベド. Meteordogija i gidralogija, 5:46-53. (収録: 藤瀬一馬ほか, 1968. 日ソ農業技術交流事業に基づく訪ソ農業視察団報告書(XI 作物光合成). 農林省農林経済局, 国際部国際協力課. 118 PP.)
- 36 Kramer, P.J., 1969. Plant and soil water relationships. 298. McGraw-Hill.
- 37 Kuiper. P.J.C., 1964. Water transport across root cell membranes of Alkenylsuccinic acids. Science. 143: 690–691.
- 38 玖村敦彦, 1977. 生物の生産機能の開発, 北海道大学, シムポジウム, 1977 19-27.
- 39 Loomis. R.S. et al., 1971. "Environmental factors in advances in sugar beet prduction". 19—48. I.S.U. Preess, Ames. Jowa. U.S.A.
- 40 McCree, K.J., 1966. A solarimeter for measuring photosynthetically active radiation. Agric. Meteorol. 3: 353—366.
- 41 Meidner. H., T.A. Mansfield. 1968. "Physiology of stomata". McGRAW-HILL. London. 87PP.
- 42 宮坂 昭ほか, 1969. 連続測定による水稲個体群の光合成・呼吸に関する研究. (3) 水稲個体群の光合成の 日変化に関する研究. 日作紀. 38 (2):41-42.
- 43 Moldau, KH. et al., 1963. ソビエト領ヨーロッパ地区上の光合成有効放射の地理的分布。Ved, 〔光合成と植物生産力の諸問題〕。M., Izd—vo AN.USSR.
- 44 Monteith, J.L., 1959. The reflection of short—wave radiation by vegetation. Quaurt.J. Roy. Meteorol. Soc.85: 386—392.
- 45 Mooney, Ha., M. West. 1964. Photosynthetic acclimation of plants of diverse orgin. Amer. Jour. Bot. 51 (8): 825—827.
- 46 Monsi, M., T. Saeki, 1953. Uber den Lichtfaktor in der Pflanzengesellschaften und seine Bedeutung für die Stoffproduktion. Jap. Jour. Bot. 14: 22–52.
- 47 村田吉男、猪山純一郎、1960. 畑作物の光合成に関する研究。(1)8種の夏作物における圃場の個体群の光合成の日変化と日射および気温との関係。日作紀。29:151-154。
- 48 ----, 1961. 水稲の光合成とその栽培学的意義に関する研究. 農技研報 D9:1-169.
- 49 Murata, Y., J. Iyama, 1963. Studies on the photosynthesis of forage crops. (2) Influence of air—temperature upon the photosynthesis of some forage and grain crops. Proc. Crop. Soc. Japan. 31: 315—322.
- 50 ——, 1965. Studies on the photosynthesis of forage crops. (4) Influence of air temperature upon the photosynthesis and respiration of alfalfa and several southern type forage crops. ibid.: 34: 154–158.
- 51 ——, 1966. ditto. (5) The influence of soil moisture content on the photosynthesis and respiration of seedlings in various forage crops. ibid. 35: 385—390.
- 54 村田吉男, 1969. 連続測定による水稲個体群の光合成・呼吸に関する研究. (3) 水稲個体群の日変化に関する研究. 日作紀. 30 (別号2) 41-42.
- 53 村田吉男ほか, 1976. 作物の光合成と生態. 農山漁村文化協会, 東京. 198~216.
- 54 Musgrave, R. B., D. N. Moss, 1961. Photosynthesis under field conditions. I. A portable closed system for determining net assimilation and respiration of Corn. Crop. Sci. 37–49.

- 55 内藤文男, 1969. 作物の蒸散量および蒸発散に関する研究. 東海近畿農試研報 18:49-147.
- 56 Niilisk, KH., 1964. トウモロコシ群落内波長別放射状態並びに光合成有効放射の計算。エストニア科学アカデミー報告。物理数学と技術シリーズ。13. 3〔収録:農林水産技術会議事務局。1969:"光合成と群落構造"。 技術会議調査資料 60 (海外)〕
- 57 日本気象協会, 1978. 太陽エネルギーシステムの研究. 気象調査. 1-663.
- 58 大島栄司, 1962. 受光条件を中心としたてん薬の光合成に関する研究, 北農試報 59:1-59.
- 59 ----, 1974. 畑作物の水問題とくにてん菜の蒸散を中心に、北農試研資、1:17-38.
- 60 , 1975. てん菜生育における若干の作物生態的知見について、北農試研資、7:1-87.
- 61 奥山富子, 1980. 西ケ原における太陽放射量について、日本気象学会関東支部だより、21:2-3.
- 62 Pasquill, F., 1950. Some further considerations of the measurement and indirect evaluation of natural evaporation. Quart. J. Roy. Meteorol. Soc. 76: 287–301.
- 63 Ross, Iu. K., T. Nilson, 1967. 水平葉からなる植物群落の放射状態. 植物群落の植物日射学的研究. 〔収録: 農林水産技術会議事務局. 1969. "光合成と群落構造", 技術会議調査資料 60 (海外)〕
- 64 佐藤 康, 伊藤睦泰, 1969. 気温, 地温の組合せに対するオーチャードグラスおよびペレニアルライグラス の生育反応。日作紀、38:313-320.
- 65 , 金鐘萬, 1980. 水稲個体群における環境と個葉の生産, 消費活動との関係。第1報、圃場における 個葉の光合成と暗呼吸、日作紀、49:243-250.
- 66 Sawada, S. and S. Miyachi, 1974. Effects of growth temperature on photosynthetic carbon metabolism in green plants. 1. Photosynthetic activities of various plants acclimatized to varied temperatures. Plant and Cell Physiol. 15: 111–128.
- 67 Slatyer, R. O. 1958. The measurement of diffusion pressure deficit in plants by a method of vapour equilibration. Aust. J. Biol. Sci. 11: 349–365.
- 68 Slatyer, R. O. and Taylor, S. A. 1960. Terminology in plant and soil water relation. Nature. 187: 977—924.
- 69 武田友四郎、玖村敦彦、1957。水稲における収量成立過程の解析。 I. 窒素条件が葉面積、同化能率及び呼吸能率に及ばす影響。II. 受光態勢並びに物質生産過程に及ばす窒素条件の影響について。日作紀。26:165-175。
- 70 ———, 県 和一, 1965. 飼料作物の生育に関する研究. (6)北方型および南方型牧草の生育におよばす温度の影響. 第141 回日本作物学会講演要旨. 日作紀. 34:496-497.
- 71 ----, ---, 1966. "作物の光合成と物質生産", 戸苅義次編, 養賢堂, 東京: 269, 1971,
- 72 竹島溥二, 1964. 水稲生育におよばす地温の研究。(3)三要素および水分の吸収におよばす age の差異なら びに地下部変温の影響。日作紀、33:319-324。
- 73 立道美朗, 1969. タバコの光合成に関する研究。(4)地下部温度変化が光合成呼吸等におよぼす影響について、日作紀、38:181.
- 74 Tanner, C. B., 1960. Energy balance approach to evapotranspiration from crops. Soil Sci. Soc. An. 24:
- 75 Taylor, R. J. and A. J. Dyer, 1958. An instrument for measuring evaporation from natural surface. Nature. 181: 408–409.
- 76 Tazaki, T. and T. Ushijima, 1968. Photosynthesis and utilization of solar energy. 1966—67. JIBP/PP. Photosynthesis level. III Group. 87—90.
- 77 Thomas, M. D. and G. R. Hill, 1937. The continuous measurment of photosynthesis, respiration and transpiration of alfalfa and wheat growing under field coditions. Plant Physiol. 12: 285–307.
- 78 ———, --——, 1949. In "Photosynthesis in plants" ed. J. Franck, W. E. Loomis. Iowa State Coll. press. Ames. Iowa: 19–52.
- 79 戸苅義次ほか, 1955. 作物の生理生態. 朝倉書店. 97-98.

- 80 Tooming, Kh. and Iu. K. Ross, 1965. 種々のトウモロコシ群落内の全短波放射の減衰。群落の放射状態に関する諸問題。〔収録:農林水産技術会議事務局。1969。"光合成と群落構造"。技術会議調査資料 60 (海外)〕
- 81 ——, 1966. 全短波放射の測定値を用いてのトウモロコシ植被内における光合成有効放射と近赤外放射と の減衰, 反射の近似的決定法について.〔収録:農林水産技術会議事務局. 1967. "光合成と多収穫". 技術会議 調査資料 49 (海外)〕
- 82 ——, Kh. Niilisk, 1967. 自然条件下で全短波放射を光合成有効放射へ換算する係数。植物群落の植物日 射学的研究。(収録:農林水産技術会議事務局。1969。"光合成と群落構造"。技術会議調査資料 60 (海外)〕
- 83 鳥潟博高ほか, 1965. 温州ミカンの葉の飽和水分不足度の周年変化. 畑地かんがいに関する研究集録. (8): 141-144.
- 84 ―――, 1967, 温州ミカンの葉の飽和水分不足度の変化と環境。同上。(9):103-105。
- 85 Totska, T., M. Monsi, 1959. Effect of water economy on plant growth. (1) Influence of water level lowering on growth of water—cultured tobaco plants. Bot. Tokyo. 72: 367–374.
- 86 —, —, 1960. ditto. (2) An analysis of water econmy of water—cultured tobaco plants. Ibid.: 73:1-131.
- 87 津野幸人, 1965, 農技研生理第2科試験成績1-15.
- 88 , 1975. わが国耕地における作物の生産力とその向上について. 暖地水稲の多収穫へのアプローチ, 日本作物学会第 160 回講演会. シンポジウム要旨. 9-16.
- 89 Ulrich, A., 1954. Growth and development of sugar beet plants at two nitrogen levels in a controlled temperature greenhouse. Proc. Amer. Soc. Sugar Beet Techn. 8: 325–338.
- 90 牛島忠広、1971、作物の光合成と物質生産、戸苅義次編、養賢堂、東京、218、
- 91 Ushijima, T. et al., 1971. P/T ratio affected by some environmental factors in Mulberry and Maize field. "Photosynthesis and utilization of solar energy" (3) Expt. JIBP/PP (JPP). 100–106PP.
- 92 内嶋善兵衛, 1964, 光合成の農業気象学的研究, 光合成有効放射, 農業技術 Vol. 19, 11:534-538,
- 93 内嶋善兵衛ほか, 1969. 作物群落内におけるエネルギーとガスの交換に関する研究. (8)トウモロコシ群落内の拡散係数と葉面拡散速度. 農業気象. 25:215-288.
- 94 内鳴善兵衛訳, 1978. 植物と太陽. 農林水産技術会議連絡調整課. エネルギー関連文献翻訳シリーズ. 2: 34-67
- 95 , 1980. 大陸上での太陽放射量の分布. (収録:農林水産技術会議事務局. エネルギー関連交献翻訳シリーズ. 4:1-161.)
- 96 内嶋善兵衛ほか、1980. 西ヶ原と筑波の全短波、および光合成有効放射の比較、日本気象学会講演要旨。64.
- 97 Watson, O.J., 1947. Comparative physiological studies on the growth of field crops. 1. Variation in net assimilation rate and leaf area between specis and within and between yearo. Ann. Bot. 11: 375–407.
- 98 Yocum, C.S. 1963. Transmission and reflection of radiant energy within plant populations. In "Harvesting the sun; photo—synthesis in plant life". ed. A.S. pietro et al. Academic press. New York. 1967. PP 268–269.
- 99 ---, et al., 1964. Photosynthesis under field conditions. (4) Solar radiation balance and photosynthic efficiency. Agron. J. 56: 249–253.

Principal Studies on Utilization of Solar Energy in Sugar Beet Plants under Field Conditions

Toru KITAMURA

Summary

The characteristics of photosynthesis, transpiration, and dry matter production in sugar beet populations under field conditions were studied, and the relationships between these characteristics and the solar radiation utilization by the crop populations were examined.

To obtain data on solar radiation utilization by sugar beet populations, respiration, and transpiration were measured. On the other hand, the relationships between these factors and environmental factors such as air temperature, soil temperature, and soil moisture content were examined using equipment with which the environmental factors were controlled. The results obtained were as follows:

1. Solar radiation on sugar beet populations.

The diurnal average of total shortwave radiation on the crop populations increased from April through June with a maximum of 1.2 cal.cm⁻².min⁻¹ for fine days, while the value for cloudy days, though somewhat varied by cloud amount and cloud form, was smaller than 0.4 cal.cm⁻².min⁻¹.

The percentage of photosynthetic active radiation to total shortwave radiation during the growing period of sugar beet was 48.1% in average; it decreased as solar altitude lowered below 30.

The diurnal photosynthetic active radiation was estimated using the conversion formula by Uchishima (1964) and the conversion coeficient by Tooming (1967). The estimated values showed a parallel tendency to that short wave radiation, reaching 195 cal.cm⁻².day⁻¹ for fine days.

2. Selective absorption characteristics of spectra in sugar beet populations.

The reflectivity and transmissivity of solar radiation in several types of sugar beet populations were measured and examined in reference to the wavelength of solar radiation. It was revealed that the crop populations had selective absorption characteristics for specific spectra and that the reflectivity and transmissivity varied according to solar altitude and the stage of population development.

In the fields of sugar beet at luxuriant growth period, the spectral reflectivity of the populations showed a sharp rise at wavelengths over 0.7μ with a small peak at 0.55 to 0.60μ . The reflectivity of photosynthetic active radiation ranged from 3.7 to 4.8% in the maximum leaf area period and from 2.9 to 4.7% in mid September.

The spectral transmissivity in sugar beet populations varied with changes in solar altitude and with population structure. The diurnal changes in the transmissivity of photosynthetic active radiation in crop populations was approximated using the exponential equation by Tooming (1966), a good approximation being obtained by substituting the coefficients C_1 , C_2 , and C_3 with 0.40 to 0. 97, 0.01 to 0.02, and 0.15, respectively.

The radiation absorptivity of sugar beet populations in the luxuriant growth period culculated from radiation balance ranged from 88.4 to 95.3%; it decreased as the row width of the crop populations increased. The radiation absorptivity of sugar beet populations with wide rows was remarkably low, although the crop populations observed had almost the same leaf areas. The reason for this is that in wide-row populations the radiation transmissivity increases as solar altitude increases.

3. Relationship between radiation balance and photosynthesis or transpiration in sugar beet populations.

Three types of sugar beet populations used for this observation were formed using three planting modes. They were, in terms of row width-interrow spacing relation, uniform (37-37cm), narrow row (45-30cm), and wide row (60-22.5cm) population. Photosynthesis and transpiration were measured simultaneously under natural light using the chamber method. The relationship between the measurements and radiation balance were examined to elucidate the significance of these relationships to dry matter production by sugar beet.

Photosynthetic rates and transpiration rates markedly varied with the type of population and years. These values were greater in the uniform population than in the narrow row and wide row populations, but, with leaf area indexes over 5, this tendency was reversed. This increase in leaf area index (over 5) remarkably affected the radiation absorptivity and radiation utilization coefficient of the crop populations.

The diurnal changes in the photosynthesis and transpiration of the crop populations showed a close relation with solar radiation.

In general the relationship between the amount of photosynthesis and solar radiation could be expressed by an exponential function. The amount of photosynthesis of the crop populations showed no relation with the total leaf area of the populations but showed close relations with both the leaf area of the vegetation cover layer and photosynthetic active radiation absorption. These relations could be expressed by the following multiple regression formula as:

$$P = -1.73 + 0.13A_{PAR} + 0.83F$$

where P=amount of photosynthesis per unit area of field

A_{PAR} = photosynthesic active radiation absorption by the vegetation cover layer

F=leaf area of vegetation cover layer

The relationship between transpilation and solar radiation was expressed by linear regression. The transpiration of sugar beet populations was closely related to both the leaf area of the middle and upper leaf layers and $0.4-0.7\mu$ band radiation absorption. This relationship was expressed by a multiple regression formula as :

$$T = -277.8 + 26.2 A_{PAR} + 4.8 F$$

Where T=transpiration per unit area of field

 $A_{PAR} = 0.4 - 0.7 \mu$ band radiation absorption by the middle and upper leaf layers of population

F=leaf area of the middle and upper leaf layers of population

The relationship between dry matter production and solar radiation utilization coefficient in sugar beet populations was examined using the measurements of photosynthesis and transpiration of the crop communities. The production of root dry matter was closely related to photosynthetic coefficient (accumulated amount of photosynthesis/amount of root dry matter at harvesting time). The coefficient lowered at P/T ratio (accumulated amount of photosynthesis/accumulated amount of transpiration ratio : $CO_2mg.m^{-2}/H_2O~kg.m^{-2}$) of about 9/1, offering an optimum condition for dry matter production.

The greatest root dry matter production was observed in the uniform (37–37cm) population. For example, in 1973, this population produced 1.75 kg.m⁻² root dry matter with 2.8% solar radiation utilization coefficient for the whole growing period, the coefficient being estimated from photosynthetic active radiation.

4. Relationship between leaf blade water potential and photosynthesis or transpiration.

Under field conditions, the diurnal changes in leaf blade water potential of sugar beet showed a close relation with both solar radiation and transpiration rate. In the fine daytime, leaf blade water potential was highest in the early morning, then dropped sharply after that presenting the lowest value around noon, and gradually rose in the afternoon. The potential decreased as transpiration rate increased, and when reaching below -6 bar., the rate of increase in transpiration gradually declined. On the other hand, photosynthetic rate turned to gradual decrease at leaf blade water potential below -6 bar.

An inverse correlation was observed between P/T ratio (photosynthetic rate/transpiration rate ratio : CO_2 mg/ H_2O g) and leaf blade water potential. This indicates that in the leaf blade water potential range of -2 to -6 bar., photosynthetic rate decreases much faster than transpiration rate. However, within the leaf blade water potential range of -6 to -8 bar., transpiration decreased, thus retarding the decrease in P/T ratio.

5. Relationship between meteorological factors and photosynthesis or transpiration.

Photosynthesis and transpiration positively correlated with metetrological factors such as solar radiation, evaporation, saturation deficit, CO_2 concentration, air temperature, and plant body temperature. In general, evaporation showed stronger correlations with these factors than photosynthesis.

6. Effects of air temperature on the physiology and plant types of sugar beets.

Suger beet populations were cultivated in a farmtron in which the growing period air temperature was kept 1.9 to 2.7° C lower than natural conditions. Plant hight and leaf area index increased at higher air temperatures (15 -20° C), but decreased at lower temperatures (below 15°C). The C/

F ratio (petiole weight/leaf blade weight ratio) increased at $15-20^{\circ}$ C, and this tendency closely related to an increase in R/P ratio (respiratory amount/amount of photosynthesis).

Photosynthesis attained a maximum at about 26° C, and decreased at lower or higher temperatures. Respiration during the night was strongly controlled by plant body temperature. Transpiration increased linearly as air temperature rose within the range of $10-30^{\circ}$ C.

Total dry matter production and net production efficiency (root weight/total body weight) were greater under natural temperature conditions than under low temperature conditions. However, in cases of leaf blade weight and petiole weight, the tendency was reversed. This indicates that roots receive less substance under low temperature conditions.

A close relationship was observed between the accumulated amount of photosynthesis in the whole growing period and the amount of dry matter production. Another close relationship was also found between the net production efficiency in dry matter production and P/T ratio (accumulated amount of photosynthesis/accumulated amount of transpiration ratio: CO₂ g.m⁻²/H₂O kg. m⁻²). A high net production efficiency was obtained when P/T ratio reached 9 in natural temperature conditions. Therfore it can be expected that some amount of increase in transpiration under favorable temperature conditions may increase the translocation of photosynthetic products from the top to the root thus resulting in high root production.

7. Effects of soil temperature on the physiology and plant types of sugar beets.

The sodl temperature during the experiment was controlled to range from 10 to 30°C using a thermostaticaly controlled water baths.

Photosynthetic rate was greatest in the range of 18 to 19°C and smaller at lower or higher temperatures. Respiratory rate during the night positively correlated to soil temperature with a respiratory temperature coefficient (Q_{10}) of 1.8. Transpiration rate increased as soil temperature rose from 10 to 30°C. The P/T ratio (photosynthetic rate/transpiration rate ratio) decreased exponentially as the soil temperature rose, though slowly in the range of 10 to 17°C.

The optimum soil temperature for net photosynthesis was 21°C. The greatest dry matter production in the early growing stage was observed in the range of 16 to 21°C (nighttime to daytime). The optimum nighttime soil temperature for dry matter production was thought to be 17°C, at which R/P ratio was low. A high net production efficiency in dry matter production was attained when P/T ratio (CO₂ mg/H₂O g) was 9/1.

8. Relationship between soil moisture content and the physiology and plant types of sugar beets.

The capillary potential of soil water was measured using a tensiometer and soil moisture content was expressed as pF value.

At pF value of 1.0, photosynthetic and transpiration rates apparently declined and P/T ratio also decreased. This indicates that under this condition the decline in transpiration is greater than that in photosynthesis. When pF value rose to the range of 1.7 to 2.0, both photosynthetic rate and transpiration rate recovered rapidly. At pF value of 1.5, photosynthetic rate recovered slower than transpiration rate. This leads to the fact that at pF value below 1.7 leaf moisture content is insufficient. The reason for this is that under low pF conditions the decline in respiratory activity

of roots lowers the suction force of the roots. Photosynthetic rate turned to decrease at pF values 2.4 and over, while transpiration rate declined at pF values 2.6 and over.

In soil-amended fields, the post-rain pF value increased rather rapidly at pF values 1.0 to 1.7, but slowly at pF values over 1.7. The reason for this is that in the soil-amended fields both drainage function and water holding ability are high. The above observations indicate that photosynthesis and transpiration recover quicker in soil-amended fields than in untreated fields. Long-term soil moisture conditions during the growing period of sugar beets change the morphology of the crop. The optimum population structure for photosynthesis or transpiration was obtained at pF values 1.7 to 2.4. Leaf area index increased when soil moisture was sufficient and decreased when it was deficient, while C/F ratio increased under both conditions.