「小麦胚芽を利用した γ ーアミノ 酪酸の効率的生産方法とスプラウトへの応用」(研究参考事項)

農研機構・北海道農業研究センター・芽室研究拠点・野菜・茶機能性研究チーム、機能性利用研究北海道サブチーム、パン用小麦研究チーム、寒地地域特産研究チーム、寒地バイオマス研究チーム 執筆担当者 (野菜・茶機能性研究チーム) 瀧川 重信

小麦胚芽を GABA 合成酵素源とし、最適なグルタミン酸ナトリウム量、ピリドキサルリン酸、反応液 p H、反応温度および反応時間により GABA を効率的に合成できる。合成した GABA をスプラウトへ施用することで、GABA 高含有スプラウトを生産できる。

1 試験目的

 γ -アミノ酪酸(Gamma Amino Butyric Acid(GABA))は、神経伝達物質作用を示す非タンパク質性のアミノ酸であり、生体内ではグルタミン酸脱炭酸酵素(GABA 合成酵素)によってグルタミン酸から生合成される。この GABA には血圧降下作用、精神の安定化作用(抗ストレス作用)等の生理作用があることが判っている。現代社会ではストレス下にあると GABA が不足がちになるとされており、現在 GABA 関連食品が数多く市販されているが、その原料価格は高く、高額で取引されているのが現状である。本研究では、小麦製粉工程で得られる小麦胚芽を用い、効率的に GABA を生産する安定技術を提供し、生産した GABA を施用して 4 種のスプラウト生産を行うことを目的とする

2 試験方法

小麦製粉工程で得られる胚芽(キタノカオリ)を GABA 合成酵素源とし、その他グルタミン酸ナトリウム、ピリドキサルリン酸および食添用塩酸を用い以下の検討を行った。各実験では、酵素源:小麦胚芽、ピリドキサルリン酸量:100 mg/l、反応液 pH:5.7±0.1、反応温度:40℃、反応時間:4 時間を基本反応条件とし、(1) GABA 合成に及ぼす合成酵素源(対照:米糠、小ブスマ)、グルタミン酸量及びピリドキサルリン酸量の影響、(2) GABA 生成に及ぼす反応液 pH および反応温度の影響、(3) GABA 生成に及ぼす反応時間の影響について検討した。また(4) スプラウト 4 種類(カイワレダイコン、ブロッコリー、ソバ、ダッタンソバ)を水耕栽培(温室 25℃、灌水 2 分間 /2 時間)し、播種後 7~10 日後にグロースチャンバー(25℃光照射下)に移動して GABA 液 50 ml(濃度 10 g/l)を 16 時間施用して GABA 含量を測定した。GABA の測定は各試料 1 g を 80%エタノールで抽出後、濃縮してから HPLC を用いて OPA (オルトフタルアルデヒド)法で測定した。

3 試験成績

表 1 酵素源、グルタミン酸量及びピリドキサルリン酸量が GABA 生成に及ぼす影響

	酵素源			Ó	「ルタミン	ノ酸量(g	;/I)	ピリドキサルリン酸量(mg/l)				
	小麦胚芽	小ブスマ	米糠	60	80	100	200	0	5	20	100	300
Glu-Na残存量(g/I)	0.2	4.0	20.2	0.3	0.5	4.6	143.1	57.3	29.8	4.0	0.2	0.4
GABA生成量(g/l)	44.7	40.6	28.3	44.9	56.3	<u>66.2</u>	48.8	7.7	26.3	38.8	44.7	46.3
GABA生成率(%)	<u>99.7</u>	94.3	69.7	99.6	99.5	95.9	35.9	18.1	59.1	94.1	<u>99.7</u>	99.5

生成率は、MW: Glu-Na=169.13、Glu=147.13、GABA=103.12から算出した.

		反応液pH									反応温度(℃)				
	4.0	4.5	5.0	5.2	5.4	5.6	5.8	6.0	6.5	7.0	30	35	40	45	50
GABA合成酵素活性(U)	17	47	127	163	188	210	243	187	36	18	71	112	<u>263</u>	187	193

反応温度40℃で1分間に1mgのGABAを生成する酵素量を1Uとした. pH調整には35%食添用塩酸を用いた.

表3 反応時間が GABA 生成に及ぼす影響

反応時間(時間)	0	1	2	3	4	5	6	7	8
Glu-Na残存量(g/I)	59.6	18.7	5.6	1.0	0.2	0.1	0.1	0.1	0.1
GABA生成量(g/l)	3.5	29.2	40.0	43.5	44.7	45.1	46.2	46.9	45.8
GABA生成率(%)	5.6	61.1	87.7	<u>97.7</u>	<u>99.5</u>	99.7	99.8	99.8	99.8
反応液の評価(色・風味)	0	0	0	0	0	0	Δ	×	×

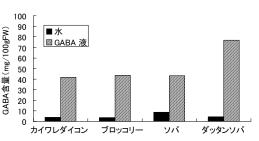


図 1 GABA 施用がスプラウトの GABA 含量に及ぼす影響

◎:非常に良好、○:良好、△:やや劣る、×:劣る

表 4 各資材の価格と使用料 (グルタミン酸 100g使用)

	容量(g)	価格(円)	1g当たり価格(円)	11反応液使用量(g)	価格(円)
小麦胚芽	25000	20000	0.80	100	80.00
グルタミン酸ナトリウム	1000	250	0. 25	115. 7	28. 93
ピリドキサルリン酸	25	9800	392. 00	0. 1	39. 20
塩酸	500	580	1. 16	50	58. 00
合計					206. 13

GABA1kgの価格は以下の計算式により導くことができる。

(GABA1kg価格) = (1L当たり価格) / (1LあたりGABA含量)×1000

(1L当たりGABA含量) = (使用グルタミン酸ナトリウム量)×(GABA分子量)/

(グルタミン酸ナトリウム分子量)×(基質転換率/100)×(回収率/100)

基質転換律:95.6%、回収率80%よりGABA1kgの価格は以下の計算式により導くことができる

| 金貨転換件:90.0%、回収率00%よりGABA1kgの価格は以下の計算式により等へことができる (GABA1kg価格) = 206.1 / (115.7×103.12 / 169.13×95.9 / 100×80 / 100)×1000 = 3808(円)

4 試験結果及び考察

- (1) GABA 生成率は小麦胚芽が 99.7%と最も高く、次いで小ブスマ 94.3%、米糠 69.7%である。GABA の生成量はグルタミン酸量に依存し、100 g/1 添加することによって、66.2 g/1 の GABA が得られる。また GABA の生成量はピリドキサルリン酸量に依存し、100 mg/1 以上添加することで、99%以上の生成率が得られる(表 1)。
- (2) 小麦胚芽中の GABA 合成酵素活性は p H5.8 で最も高く、反応温度 40℃で最も高い (表 2)。
- (3) GABA の生成率は反応 3~4 時間でほぼ 100% となり約 45 g/1 の GABA が得られる。 その後生成率はほぼ 100% を維持するが反応 7 時間以上では反応液の酸化、雑菌 の増殖等による反応液の色、風味の劣化が起こる (表 3)。
- (4) 水耕栽培のカイワレダイコン、ブロッコリー、ソバおよびダッタンソバのスプラウトは $1\sim10~mg/100gFW$ の GABA を含有するが、10~g/1 の濃度に調整した GABA 液を水耕施用することで約 $40\sim80~mg/100gFW$ に増加する(図 1)。
- (5) GABA 生産に関わる原料コストは GABA1 kg あたり 3808 円である (表 4)。

5 普及指導上の注意事項

- (1) これらの成果を、 γ アミノ酪酸製造の基礎知見とする。また γ アミノ酪酸 強化スプラウト等高機能性農作物生産の基礎知見とする。
- (2) 特許出願中(特願 2006-225497)(特願 2007-176419)